Imre M. Jánosi



professor (DSc, Habil., PhD, MSc, MA)

vice dean of strategic affairs
head of the Doctoral School of Environmental Science

Faculty of Science
Department of Physics of Complex Systems, and von Kármán Laboratory of Environmental Flow
Eötvös Loránd University, Pázmány Péter sétány 1/A, H-1117 Budapest, Hungary (next to Austria)
Tel: +(36)-(1)-372-2878 (in campus: 6578)
Email: imre.janosi at ttk.elte.hu
Office: Northern block, 5.54


Közlemények Magyar Nyelven

My citations at Google Scholar

Scientific Publications

·         85. Laboratory experiments on large-scale geophysical flows.
Miklós Vincze, and Imre M. Jánosi
In: The Fluid Dynamics of Climate, eds.: A. Provenzale, E. Palazzi, and K. Fraedrich. (CISM Courses and Lectures, Vol. 564.) Springer, Vienna, CISM Udine, 2016, pp. 61-94.

·         84. Vorticity generation by rough walls in 2D decaying turbulence.
Gábor Tóth, and Imre M. Jánosi
Journal of Statistical Physics, 161, 1508-1518 (2015).
doi: 10.1007/s10955-015-1375-x

·         83. Early signatures of ozone trend reversal over the Antarctic.
Anita Várai, Viktória Homonnai, Imre M. Jánosi, and Rolf Müller
Earth' Future, 3, 95-109, (2015).
doi: 10.1002/2014EF000270

·         82. Global trend analysis of the MODIS drought severity index.
Péter I. Orvos, Viktória Homonnai, Anita Várai, Zoltán Bozóki, and Imre M. Jánosi
Geoscientific Instrumentation, Methods and Data Systems, 4, 189-196 (2015).
doi: 10.5194/gi-4-189-2015

·         81. Trend analysis of a new MODIS drought severity index with emphasis on the Carpathian Basin.
Péter I. Orvos, Viktória Homonnai, Anita Várai, Zoltán Bozóki, and Imre M. Jánosi
Időjárás (Quart. J. of the Hungarian Meteorological Service), 118, 305-321 (2014).

·         80. Chaotic motion of light particles in an unsteady three-dimensional vortex: Experiments and simulation.
József Vanyó, Miklós Vincze, Imre M. Jánosi, and Tamás Tél
Physical Review E, 90, 013002 (2014).
doi: 10.1103/PhysRevE.90.013002

·         79. PIV measurement of the flow past a generic car body with wheels at LES applicable Reynolds number.
András Gulyás, Ágnes Bodor, Tamas Regert, and Imre M. Jánosi
International Journal of Heat and Fluid Flow, 43, 220-232 (2013).
doi: 10.1016/j.ijheatfluidflow.2013.05.012

·         78. Extending water vapor trend observations over Boulder into the tropopause region: Trend uncertainties and resulting radiative forcing.
A. Kunz, R. Müller, V. Homonnai, I.M. Jánosi, D. Hurst, A. Rap, P.M. Forster, F. Rohrer, N. Spelten, and M. Riese
Journal of Geophysical Research: Atmospheres, 118, 1-16 (2013).
doi: 10.1002/jgrd.50831

·         77. Comparative Spectral analysis and correlation properties of observed and simulated total column ozone records.
Viktória Homonnai, Imre M. Jánosi, Franck Lefèvre, and Marion Marchand
Atmosphere, 4, 198-213 (2013).
doi: 10.3390/atmos4020198

·         76. Model study of combined wind and solar electricity production in Hungary.
Imre M. Jánosi
Journal of Renewable and Sustainable Energy, 5, 033102 (2013).
doi: 10.1063/1.4803528

·         75. Reconciliation of essential process parameters for an enhanced predictability of Arctic stratospheric ozone loss and its climate interactions (RECONCILE): activities and results.
Marc von Hobe, et al. (88 coauthors: …Viktória Homonnai,...Imre M. Jánosi,...)
Atmospheric Chemistry and Physics, 13, 9233-9268 (2013).
doi: 10.5194/acp-13-9233-2013

·         74. Advection of passive tracers in the atmosphere: Batchelor scaling.
Tímea Haszpra, Péter Kiss, Tamás Tél, and Imre M. Jánosi
International Journal of Bifurcation and Chaos, 22, 1250241 (2012).
doi: 10.1142/S0218127412502410

·         73. PIV measurement of the flow past a generic car body with wheels at LES applicable Reynolds number.
András Gulyás, Ágnes Bodor, Tamás Régert, and Imre M. Jánosi
In: Proceedings of CMFF'12 (edited by J. Vad), Budapest, Hungary, September 4-7, 2012.
CD-ROM ISBN 978-963-08-4588-5

·         72. An experimental study of the Atlantic variability on interdecadal timescales.
Miklós Vincze, Imre M. Jánosi, Eszter Barsy, Tamás Tél, and Anita Várai
Nonlinear Processes in Geophysics, 19, 335–343 (2012).
www.nonlin- processes -geophys.net/19/335/2012/
doi: 10.5194/npg-19-335-2012

·         71. Nonlinear resonance in barotropic-baroclinic transfer generated by bottom sills.
Julia Boschan, Miklós Vincze, Imre M. Jánosi, and Tamás Tél
Physics of Fluids, 24, 046601 (2012).
doi: 10.1063/1.3699062

·         70. Search for possible relationship between volcanic ash particles and thunderstorm lightning activity.
A. Várai, M. Vincze, J. Lichtenberger, and I. M. Jánosi
IOP Journal of Physics: Conference Series, 333, 012016 (2011).
doi: 10.1088/1742-6596/333/1/012016

·         69. The effect of a localized geothermal heat source on deep water formation.
Miklós Vincze, Anita Várai, Eszter Barsy, and Imre M. Jánosi
Nonlinear Processes in Geophysics, 18, 841-847 (2011).
http://www.nonlin-processes-geophys.net/18/841/2011/
doi: 10.5194/npg-18-841-2011

·         68. Rapid Microtubule Self-Assembly Kinetics.
Melissa K. Gardner, Blake D. Charlebois, Imre M. Jánosi, Jonathon Howard, Alan J. Hunt, and David J. Odde
Cell, 146, 582-592 (2011). doi: 10.1016/j.cell.2011.06.053

·         67. Is the Atlantic Multidecadal Oscillation (AMO) a statistical phantom?
Miklós Vincze, and Imre M. Jánosi
Nonlinear Processes in Geophysics, 18, 469-475 (2011).
www.nonlin-processes-geophys.net/18/469/2011/
doi: 10.5194/npg-18-469-2011

·         66. Dynamics of passive tracers in the atmosphere: laboratory experiments and numerical tests with reanalysis wind fields.
I. M. Jánosi, P. Kiss, V. Homonnai, M. Pattantyús-Ábrahám, B. Gyüre, and T. Tél
Physical Review E, 82, 046308 (2010). doi: 10.1103/PhysRevE.82.046308 2010
Physical Review E, Kaleidoscope Images, October

·         65. WMO/UNEP Scientific Assessments of Ozone Depletion 2010.
World Meteorological Organization and the United Nations Environment Programme
Report No. 52, 516 pp., Geneva, Switzerland (2011).

·         64. Time-asymmetric fluctuations in the atmosphere: daily mean temperatures and total-column ozone.
P. Kiss, and I.M. Jánosi
Philosophical Transactions of the Royal Society A, 368, 5721-5735 (2010). doi: 10.1098/rsta.2010.0265

·         63. Basics of lava-lamp convection.
B. Gyüre, and I.M. Jánosi
Physical Review E, 80, 046307 (2009). doi: 10.1103/PhysRevE.80.046307
Press releases:
29. September 2009: InsideScience.org, „Lava And The Lamp
01. October 2009: American Physical Society (www.aps.org), Latest News
01. October 2009: Minnesota Post, „ Do lava lamps and actual lava share similar characteristics?
14. October 2009: PHYSORG.com, by Lauren Schenkman, Inside Science

·         62. Contrasting electricity demand with wind power supply: case study in Hungary.
P. Kiss, L. Varga, and I.M. Jánosi,
Energies, 2, 839-850; (2009). doi: 10.3390/en20400839

·         61. Comparison of wind power estimates from ECMWF reanalyses with direct turbine measurements.
P. Kiss, L. Varga, and I.M. Jánosi,
Journal of Renewable and Sustainable Energy, 1, 033105 (2009). doi: 10.1063/1.3153903

·         60. Limitations of wind power availability over Europe: a conceptual study.
P. Kiss, and I.M. Jánosi,
Nonlinear Processes in Geophysics, 15, 803-813 (2008). http://www.nonlin-processes-geophys.net/15/803/2008/npg-15-803-2008.html

·         59. Power-law decaying oscillations of neutrally buoyant spheres in continuously stratified fluid.
I. Biró, K.G. Szabó, B. Gyüre, I.M. Jánosi, and T. Tél
Physics of Fluids, 20, 051705 (2008). doi: 10.1063/1.2927461

·         58. Comprehensive empirical analysis of ERA-40 surface wind speed distribution over Europe.
P. Kiss, and I.M. Jánosi
Energy Conversion and Management, 49, 2142-2151 (2008). doi: 10.1016/j.enconman.2008.02.003

·         57. Amplified internal pulsations on a stratified exchange flow excited by interaction between a thin sill and external seiche.
M. Vincze, P. Kozma, B. Gyüre, I.M. Jánosi, K.G. Szabó, and T.Tél
Physics of Fluids, 19, 108108 (2007) doi: 10.1063/1.2796182

·         56. Nonlinear statistics of daily temperature fluctuations reproduced in a laboratory experiment.
B. Gyüre, I. Bartos, and I.M. Jánosi
Physical Review E, 76, 037301 (2007). doi: 10.1103/PhysRevE.76.037301

·         55. Long-range correlations of extrapolar total ozone are determined by the global atmospheric circulation.
P. Kiss, R. Müller, and I.M. Jánosi,
Nonlinear Processes in Geophysics, 14,  435-442 (2007). www.nonlin-processes-geophys.net/14/435/2007/

·         54. Early calibration problems detected in TOMS Earth-Probe aerosol signal.
P. Kiss, I.M. Jánosi, and O. Torres,
Geophysical Research Letters, 34,  L07803 (2007). doi: 10.1029/2006GL028108

·         53. Vortex flow generated by a magnetic stirrer.
G. Halász, B. Gyüre, I.M. Jánosi, K.G. Szabó, and T. Tél,
American Journal of Physics, 75,  1092-1098 (2007). doi: 10.1119/1.2772287

·         52. Metastability of microtubules induced by competing internal forces.
V. Hunyadi, and I.M. Jánosi,
Biophysical Journal, 92,  3092-3097 (2007). doi: 10.1529/biophysj.106.091793

·         51. Why is the microtubule lattice helical?
V. Hunyadi, D. Chrétien, H. Flyvbjerg, and I.M. Jánosi,
Biology of the Cell, 99,  117-128 (2007). doi: 10.1042/BC20060059

·         50. Side pressure anomalies in 2d packings of frictionless spheres.
I. Bartos, and I.M. Jánosi,
Granular Matter, 9,  81-86 (2007). doi: 10.1007/s10035-006-0024-0

·         49. Laboratory modeling of atmospheric flow phenomena: Mountain waves.
B. Gyüre, and I.M. Jánosi,
Idôjárás (Quart. J. of the Hungarian Meteorological Service), 110,  299-307 (2006).

·         48. Nonlinear correlations of daily temperature records over land.
I. Bartos, and I.M. Jánosi,
Nonlinear Processes in Geophysics, 13,  571-576 (2006). www.nonlin-processes-geophys.net/13/571/2006/

·         47. Correlation properties of daily temperature anomalies over land.
A. Király, I. Bartos, and I.M. Jánosi,
Téllus A, 58,  593-600 (2006). doi: 10.1111/j.1600-0870.2006.00195.x

·         46. Atmospheric response function over land: Strong asymmetries in daily temperature fluctuations.
I. Bartos, and I.M. Jánosi,
Geophysical Research Letters, 32,  L23820 (2005). doi: 10.1029/2005GL024559

·         45. Empirical mode decomposition and correlation properties of long daily ozone records.
I.M. Jánosi, and R. Müller,
Physical Review E, 71,  056126 (2005). doi: 10.1103/PhysRevE.71.056126

·         44. Detrended fluctuation analysis of daily temperature records: Geographic dependence over Australia.
A. Király, and I.M. Jánosi,
Meteorology and Atmospheric Physics, 88,  119-128 (2005). doi: 10.1007/s00703-004-0078-7

·         43. Mechanical stress induced mechanism of microtubule catastrophes.
V. Hunyadi, D. Chrétien, and I.M. Jánosi,
Journal of Molecular Biology, 348,  927-938 (2005). doi: 10.1016/j.jmb.2005.03.019

·         42. Book Review: "Nonlinear Time Series Analysis, 2nd Edition" by Holger Kantz and Thomas Schreiber.
I.M. Jánosi
Fractals, 12,  355-356 (2004).

·         41. Turbulent drag reduction in dam-break flows.
I.M. Jánosi, D. Jan, K.G. Szabó, and T. Tél,
Experiments in Fluids, 37,  219-229 (2004). doi: 10.1007/s00348-004-0804-4

·         40. What determines the nocturnal cooling timescale at 2 m?
M. Pattantyús-Ábrahám, and I.M. Jánosi,
Geophysical Research Letters, 31,  L05109 (2004). doi: 10.1029/2003GL019137

·         39. Nonuniversal atmospheric persistence: Different scaling of daily minimum and maximum temperatures.
M. Pattantyús-Ábrahám, A. Király, and I.M. Jánosi,
Physical Review E, 69,  021110 (2004). doi: 10.1103/PhysRevE.69.021110

·         38. High precision balance from salt and water and the slow swelling of ping-pong balls.
I.M. Jánosi, G. Szabó, and T. Tél,
European Journal of Physics, 25,  303-310 (2004).

·         37. Stratified flow over asymmetric and double bell-shaped obstacles.
B. Gyüre, and I.M. Jánosi,
Dynamics of Atmospheres and Oceans, 37,  155-170 (2003).

·         36. Statistical test of throwing events on the rotating Earth.
I.M. Jánosi, and P. Bántay,
European Physical Journal B, 30,  411-415 (2002).

·         35. Is bioconvection enhancing bacterial growth in quiescent environments?
I.M. Jánosi, A. Czirók, D. Silhavy, and A. Holczinger,
Environmental Microbiology, 4,  525-531 (2002).

·         34. Structural microtubule cap: Stability, catastrophe, rescue, and third state.
I.M. Jánosi, D. Chrétien, and H. Flyvbjerg,
Biophysical Journal, 83,  1317-1330 (2002).

·         33. Stochastic modeling of daily temperature fluctuations.
A. Király, and I.M. Jánosi,
Physical Review E, 65,  051102 (2002).

·         32. Modeling the BUX index by a novel stochastic differential equation.
P. Alács, and I.M. Jánosi,
Physica (Amsterdam) A, 299,  273-278 (2001).

·         31. I.M. Jánosi,
Search for intelligence by motion analysis.
In: Traffic and Granular Flow '99, eds. D. Helbing, H.J. Herrmann, M. Schreckenberg, and D.E. Wolf,
(Springer-Verlag, Berlin, 2000) pp. 81-86.

·         30. Bioconvective dynamics: Dependence on organism behaviour.
A. Czirók, I.M. Jánosi, and J.O. Kessler,
Journal of Experimental Biology, 203,  3345-3354 (2000).

·         29. Gambling on the Budapest Stock Exchange.
I.M. Jánosi,
European Physical Journal B, 17,  333-339 (2000).

·         28. Microtubule's conformational cap.
D. Chrétien, I.M. Jánosi, J.-C. Taveau, and H. Flyvjberg,
Cell Structure and Function, 24,  299-303 (1999).

·         27. Growth of companies and water-level fluctuations of the river Danube.
I.M. Jánosi, and J.A.C. Gallas,
Physica (Amsterdam) A, 271,  448-457 (1999).

·         26. Statistical analysis of 5 s index data of the Budapest Stock Exchange.
I.M. Jánosi, B. Janecskó, and I. Kondor,
Physica (Amsterdam) A, 269,  111-124 (1999).

·         25. Globally coupled multiattractor maps: Mean field dynamics controlled by the number of elements.
I.M. Jánosi, and J.A.C. Gallas,
Physical Review E, 59,  R28-R31 (1999).

·         24. Turbulent helium gas cell as a new paradigm of daily meteorological fluctuations?
I.M. Jánosi, G. Vattay, and A. Harnos,
Journal of Statistical Physics, 93,  919-926 (1998).

·         23. Onset of bioconvection in suspensions of Bacillus subtilis.
I.M. Jánosi, J.O. Kessler, and V.K. Horváth,
Physical Review E, 58,  4793-4800 (1998).

·         22. Modeling elastic properties of microtubule tips and walls..
I.M. Jánosi, D. Chrétien, and H. Flyvjberg,
European Biophysical Journal, 27,  501-513 (1998).

·         21. Chaotic particle dynamics in viscous flows: The three-particle Stokeslet problem.
I.M. Jánosi, T. Tél, D.E. Wolf, and J.A.C. Gallas,
Physical Review E, 56,  2858-2868 (1997).

·         20. On the evolution of density dependent dispersal in a spatially structured population model.
I.M. Jánosi, and I. Scheuring,
Journal of Theoretical Biology, 187,  397-408 (1997).

·         19. I.M. Jánosi,
Highway traffic and price increase in the baking industry: Foundation of the systematic windshield dirtology.
In: Traffic and Granular Flow, eds. D.E. Wolf, M. Schreckenberg, and A. Bachem,
(World Scientific, Singapore, 1996) pp. 187-191.

·         18. Anomalous density dependence of static friction in sand.
V.K. Horváth, I.M. Jánosi, and P. Vella,
Physical Review E, 54,  2005-2009 (1996).

·         17. When two and two make four: A stuctured population without chaos.
I. Scheuring, and I.M. Jánosi,
Journal of Theoretical Biology, 178,  89-97 (1996).

·         16. Reply to ``Comment on `Absence of chaos in a self-organized critical coupled map lattice' ''.
I.M. Jánosi, and I. Scheuring,
Physical Review E, 52,  2116-2117 (1995).

·         15. Surface properties and flow of granular material in a two-dimensional rotating-drum model.
G. Baumann, I.M. Jánosi, and D.E. Wolf,
Physical Review E, 51,  1879-1888 (1995).

·         14. Particle trajectories and segregation in a two-dimensional rotating drum.
G. Baumann, I.M. Jánosi, and D.E. Wolf,
Europhysics Letters, 27,  203-208 (1994).

·         13. Absence of chaos in a self-organized critical coupled map lattice.
A. Csilling, I.M. Jánosi, G. Pásztor, and I. Scheuring,
Physical Review E, 50,  1083-1092 (1994).

·         12. Exploring transient chaos in an NMR-laser experiment.
I.M. Jánosi, L. Flepp, and T. Tél
Physical Review Letters, 73,  529-532 (1994).

·         11. Fractal clusters and self-organized criticality.
I.M. Jánosi, and A. Czirók,
Fractals, 2,  153-168 (1994).

·         10. Time series analysis of transient chaos.
I.M. Jánosi, and T. Tél,
Physical Review E, 49,  2756-2763 (1994).

·         9. Self-organized criticality with and without conservation.
I.M. Jánosi, and J. Kertész,
Physica (Amsterdam) A, 200,  179-188 (1993).

·         8. Soft turbulent state of the atmospheric boundary layer.
I.M. Jánosi, and G. Vattay,
Physical Review A, 46,  6386-6389 (1992).

·         7. Self-organization and anomalous diffusion.
P. Bántay, and I.M. Jánosi,
Physica (Amsterdam) A, 185,  11-18 (1992).

·         6. Avalanche dynamics from anomalous diffusion.
P. Bántay, and I.M. Jánosi,
Physical Review Letters, 68,  2058-2061 (1992).

·         5. Results on the continuous energy self-organized critical model in one dimension.
Z. Fodor, and I.M. Jánosi,
Physical Review A, 44,  1386-1389 (1992).

·         4. The SXS investigation of YBaCuO ceramics.
J. Kojnok, Z. Dankházi, I.M. Jánosi, and A. Szász,
Vacuum, 40,  229 (1990).

·         3. Close-packed Frank-Kasper coordination and high critical temperature superconductivity.
A. Szász, D.J. Fabian, and I.M. Jánosi,
Periodica Polytechnica, 34,  163-171 (1990).

·         2. Effect of anisotropy on the self-organized critical state.
I.M. Jánosi,
Physical Review A, 42,  769-774 (1990).

·         1. Dynamics of water droplets on a window pane.
I.M. Jánosi, and V.K. Horváth,
Physical Review A, 40,  5232-5237 (1989).