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Abstract. In a low-order chaotic global atmospheric circu-  For a first test of the effects of replacing white noise by
lation model the effects of deterministic chaotic driving are chaotic driving a conceptual model of the atmosphere is used
investigated. As a result of driving, peak-over-threshold typehere, Lorenz’s global atmospheric circulation model (L84)
extreme events, e.g. cyclonic activity in the model, become(Lorenz 1984. This low-order model is not only appeal-
more extreme, with increased frequency of recurrence. Wheing (Shil'nikov et al, 1995 Provenzale and Balmford999
the characteristic time of the driving is comparable to thatTél and Gruiz 2006 p. 293; Freire et al. 2008, but it
of the undriven system, a resonance effect with amplifiedcan be derived from the quasi-geostrophic equations gov-
variance shows up. For very fast driving we find a reducederning the large-scale motion of the atmosphdregbber
enhancement of variance, which is also the case with whitel995. As a driving, we choose a paradigmatic chaotic
noise driving. Snapshot attractors and their natural measuresignal, the first component of the classical Lorenz equa-
are determined as a function of time, and a resonance effectsons (L63) (orenz 1963 coupled in an additive manner.
is also identified. The extreme value statistics of group max-The coupling of low-order models has already been used in
ima is found to follow a Weibull distribution. the climate context, see e.g. the workPalmer(1993 and
Ghil and Jiang1998. We focus on changes in the variabil-
ity of the system, relative to either the undriven or the noisy
case.
1 Introduction The study of extreme events is timely, and has already
been investigated in elementary chaotic modécglis
In the modeling of climate systems the approach of stochastiet al, 2006 Nicolis and Nicolis 2009. In our chaotically
parametrization is a disputed topic and active area of researciriven model climate we study extreme events, defined in a
(Wilks, 2008. Any model of such a complex system is in- peak-over-threshold sensBl¢nder et al. 2008, and their
evitably a poor approximation of reality since many param-return time statistics as a function of the time scales and the
eters, or perhaps even underlying physical processes, are ntifreshold level. We demonstrate that with chaotic driving,
precisely known. Therefore it is worth simulating these un-relative to the undriven system, (i) seldom occurring events
certainties by the inclusion of proper noise terms into the patecome more extreme, and (ii) the return times of moderately
rameters of the dynamics, as suggestedbif et al. (2008 extreme events might become shorter or longer depending on
and Chekroun et al(2010. In their studies stochasticity the time scale of driving and the threshold level — while they
is represented by white noise. Our aim is to extend theare always shorter with white noise. Given that the atmo-
stochastic approach from using white noise to using tempospheric circulation model L84 derives from fluid dynamics
rally chaotic drivings. The novelty of this is that, although (Roebber1995, our results prompt the importance of using
the driving remains random-like, its time scale need not toa proper — perhaps chaotic — parametrization for more realis-
be much shorter than that of the basic dynamics, but it can béic predictions.

comparable or even longer than that. The concept of pullback attractors of driven continuous-
time dynamical system#(nold, 1998 Ghil et al, 2008 has
been suggeste€hekroun et a) 2010 as a promising tool to
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an ensemble of trajectories (a broadly applied method in thél'he physical content of Eq. (L84) is that the time-dependent

spirit of ensemble forecasting), all subject to g@nereal-  solar forcing
ization of noise. After some time, the ensemble traces out
a pullback attractor, and also determines a distribution onf'(t) = Fo+ Ax(t) Q)

it. The attractor is changing continuously in time, and typ-

ically remains chaotic throughout its evolution. The pull- creates a temperature difference between the equator and the
back attractors, that are the fractal building blocks of fuzzy pole, which influences most directly the wind speed of the
noise-induced chaotic attracto®ddai et al, 2011), provide ~ Westerlies represented by As a counter effect to thermal
amore detailed description of the process than the traditionalmbalances, cyclonic activity facilitates poleward heat trans-
methods. port, two modes of which are represented bpndz. By

In the dynamical systems community, a practically equiv- definition, the variables correspond to global averages, and
alent concept, that of the snapshot attractors, has been knowfRere is no possibility for studying local quantities as in more
for many yearsRomeiras et a].1990. The idea is particu- realistic models or by measurement data.
larly well suited for understanding the advection of passive Note that the coupling between L84 an L63 acts one way
particles in random flowsSommerer and Qt1993 Jacobs  only, that is, L84 does not influence L63. The coupled sys-
et al, 1997 Neufeld and El, 1998, and explains experi- tem of L84 and L63 is autonomous. Being interested in the
mental findings $ommerer and Qtt1993. In this setting  Climate model L84, we can consider it as@n-autonomoys
the driving might also be some chaotic process. or driven, subsystem subject to a time-dependent solar ra-

In general, a snapshot or pullback attractor is an objecgiation F(z) (1) where the temporally irregular part of the
which attracts any trajectories initialized in the infinitely re- driving follows from thex-component of L63 ford 0.
mote past within a basin of attractioGfil et al, 2008. A For the parameter setting we take the common choice:
shapshot attractor can be either a simple object or a fractal. @ = 1/4, b =4 (L84) ando =10, p = 28, p =8/3 (L63).

In the following, extreme-event-related return time statis- Parameteu is the ratio of the damping times of the Wester-
tics is pursued also in the snapshot attractor framework. Wdies and the cyclonic eddies, whikeis the ratio of relaxation
find that the magnitude of seldom occurring events also delimes of respectively the displacement and amplification of
pends on the time scale of chaotic driving in a non-monotoniceddies by the Westerlies. Both sets of equations appear in a
manner, revealing a resonance effect. In terms of Snapshdi{lmensmnless form with the time unit in L84 corresponding

probability distributions this resonance manifests itself in {0 @bout 5 days, the characteristic damping time of eddies.
sharp peaks. The time-scale factot is viewed as the ratio of the char-

acteristic times in L63 and L84. The choice ok 5 can
model is introduced and explained. In Se&the concept be interpreted as a daily influence of, say, convectional ori-

of snapshot attractors is reviewed in more details, and th@!N: While 7 ~1/73 corresponds with an annual time scale

technique of their construction is described. Measures of ex9f driving.  The coupling strengtit is set to realize rather

tremal behavior in the snapshot framework are then identi-S'ONg perturbation, superimposed onto a static part of the
fied. Subsequently, in Seet, the results of extreme event forcm.g, Fo. The standard choices with =0 are (orenz
return time statistics are presented, in the snapshot ensembf@84: Fo = 6 for summer, and* = 8 for winter. For the

as well as the single trajectory framework. The extreme valugifVen case we choosk =8 and A = 0.025. Given that
statistics is identified as Weibullian. In the end, in SB¢cwve x(~t) € [_17'5} 17.5], we haver (1) e.[7._56, 8.44]. In Eq. (1),
discuss our results and draw conclusions. AX may be interpreted as the variation of the albedo either

through cloud formation due to varying weather conditions
(r = 1), or orbital eccentricityq « 1). More generallyF (¢)
can also be related to the strength of the green house effect.

The paper is organized as follows. Next, in S&;tthe

2 Model

The model to be studied reads as follows: 3 Snapshot attractors

o 2 2 ~
=—y°—7z" — Fo+A _
x y" =" —ax +a(Fo+ AY), The autonomous L84 system & 0) exhibits regular sum-

y=xy—bxz —y+1, (L84) mer and chaotic winter (see bifurcation diagram in Hig).

Z=xz+bxy —z, The dynamics can be conveniently visualized by a 2-D
Poincaé section of the attractor, taken traditionally as the
z =0 section.

f=t0(—%), In the driven, nonautonomous system, when using a sin-

. o gle trajectory, the attractor on the= 0 Poincaé section (PS)

y=rtlpx —y—x2), (L63) s fuzzy. In contrast, if an ensemble of trajectories of the

I=1(—Bi+7i). L84 system is followed — with a smooth initial distribution
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Snapshot attractors are shown in Hilg—d in various time
instants. It is remarkable that the snapshot attractors of this
model remain in the first quadrant of they (z = 0) plane

for any time. The time is measured from after 100 time

1o units when theV = 107 particles, initially evenly distributed
1 in x €[1.151.25], y €[1,1.1], z =0, already reached the
05 3-D snapshot attractor. (A typical convergence time to the
o o5 1 15 2 25 attractor is estimated to be 30 time units.) The equations
were simulated using a fourth order Runge-Kutta integrator,
- © 25 (d) with a fixed time step of: = 0.005. Note that the pattern

changes with time, but keeps the fractal character. The snap-
shot attractor consists of a “mainland”, slightly displaced and
distorted over time, and occasionally an “island” which can
grow large or disappear for finite periods of time. Thus, the
island is identified as a feature in which the deviation of the
driven system from the undriven one (Fig) is clearly man-
ifested, since the PS and hence the island certainly never
changes in the undriven case.

One might ask if the appearance of the island is not an arte-
fact due to a special choice of the PS. To answer this ques-
tion a 3-D snapshot attractor is shown in F&y.whose PS
is shown in Fig.1lc. It can be seen that its “front view” is
not centrally symmetric. The maximal extension of the at-
tractor consist in a bulge, which can be regarded to represent
extremalbehavior. When traditionally taking an intersection
with z = 0 for the better visualization of the fractality, it is
this bulge that appears as an island. It is fortunate that the
traditional sectiory = 0 properly reflects the presence of the
bulge.

In physical terms any region belonging to only large values

also indicated).(e) Bifurcation diagram of they coordinate with Of_ y Or z represents extreme cycloni_c activi_ty in the model.
A =0. The arrow indicates the range swept by the sighgiven ~ Since the bulge or the Island_ IS a§50C|ated W'_th |@fgﬁ 1.9)
by Eq. (1). Dots aroundy ~ 2 correspond to a chaotic “island” or values, and because of their unique shape in this model, the

points from periodic attractors. island is particularly well suited to represent extreme events
in this model. The natural measureof the island is the
probability that a trajectory of the ensemble visits the island
on the PS. Numerically it is well approximated by the rel-
natesr, y, z trace out dractal object, thesnapshot attractor  ative number of particles hitting the region of the island on
whose shape is continuously changing over timiisz=0  the PS at a given instant of time. In Fig.time series of
section is also a fractal, which is commonly referred to alsoy is shown for various values af. These are segments of
as a snapshot attractor. The ensemble is necessarily of finitenger time series of lengtty =500. In the diagrams, the
size in numerical studies, and particles fall on the surface olupper horizontal line indicates the maximal island measure
intersection with zero probability at any given time. This sit- of all thoseundrivensystems A = 0) for which Fy is from
uation can be catered for naively by consideriniy ameigh-  the range of the arrow of Fige. Regular regimes where no
borhood of the chosen sectioning surface, viewing particlegslands exist are excluded. It is perhaps the most remarkable
from within a “thick slice”. The problem with this technique feature of the diagram that the maximal value 0.044 of the
is, however, that the resulting distribution of retained parti- jsland measure with constaft= Fy (found atFp =8.33) is
cles does not represent the distribution over the true instanexceeded regularly and significantly. The island meagure
taneous PS. An appropriate technique to overcome this is thean range up to 0.6 or more with= 1 (not shown). The
following. The unique time instants when the particles, eachsnapshot in Figlb represents a case with=0.174. We
and every one, cross the surface are recorded, and those paiote that defining an island by> 1.9 results in a maximal
ticles together are retained to form a PS whose crossing timgsland “measure” of 1/13 = 0.077 for the dominant period-13
fall in a particular time interval of lengths < 1. We use attractor in the periodic window. This value is also exceeded
5t =0.01. by far.

Fig. 1. (a) Chaotic attractor on the Poin@asectionz =0,z > 0,

of the undriven systemA(= 0) with Fo =8 and(b—d) snapshot
attractors of the chaotically driven syster =€ 0.025) witht =1,
taken at the indicated times (whéhtakes values of 7.89, 8.16, and
7.65, respectively, and the instantaneous megswfkthe island is

atzg =0 — up to a certain time>>> 1, the momentary coordi-
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Fig. 3. Time series of the island measwrédor (a) r =1/10,(b) T =

1, and(c) t = 10. The measure of the island is plotted with a time
increment of 05. The number of points in the sections is varying
between about 5000 and 16 000 (with= 106). Upper horizontal
line indicates the maximal value pf=0.044 for the undriven sys-
tem with fixed Fp in [7.56, 8.44], i.e. in the interval in which the
driving changes; the lower one indicafe&Fy = 8) = 0.011.

Fig. 2. Front, side and top views of the 3-D snapshot attractoeat
2.9, thez =0 section of which is shown in Figc. The horizontal

line indicates the = 0 surface of intersection. 600

400

For comparison we also studied L84 drivervayite noise
X in L84 is replaced by a homogeneously distributed random
variable in[—17.5,17.5]. It is worth noting that in this case
the island on the PS was found to never disappear. This it
itself is a hint of the fact that the variance of extremes is
larger with chaotic driving.

By a mere observation of the islands it is surprising thatrig. 4. The natural distributior of the attractor on the PS indicates
their measure can be comparable with that of the full at-the strong differences in the island measure. The distributions in
tractor. The distribution on the snapshot attractor, how-panels(a) and(b) correspond to Figla and b withy =0.011 and
ever, explains the phenomenon (F#p), showing a strong ©=0.174, respectively. A number of 250 bins are used in both
accumulation of particles in some parts of the island. Forandy directions, and the PS’s involve about 35 000 attractor points
comparison, Figda shows the undriven case from Fita ~ €ach.
with £ =0.011.

The probability distributionP;, of y for the 3-D snapshot
attractors, whose PS's are displayed in Blg=d, is also eval-
uated (Fig5). With chaotic driving there is a clear tendency
of the distribution to have sharp peaks, which are displaced . -
and resized over time. These are similar features to thosél'1 Recurrence time statistics
exposed in Fig4.

It is worth emphasizing that for the range of parameters in-

vestigated the snapshot attractor is never found to be regul . . . .
9 P 9 althe statistics of extreme events in terms of the time series of

in spite of the fact that the admittable values cover sev- O .
o . o w(t) can be studied in a peak-over-threshold sense with some

eral periodic windows of the undriven problem (see B, .

i.e. chaos suppresses the regular behavior threshold levelur. The return time, of an extreme event

o ' is the time interval between a pair of subsequent descend-
ing and ascending branches of the time series belonging to a
chosen value ofi7. The dependence of mean return times
on thresholdur is displayed in Fig6. Each curve is shown
up to a threshold valugmax beyond which the statistics is

0
3

4 Extreme event recurrence time and extreme
value statistics

Ensemble (snapshot) framework
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(@) (b)

Single trajectory framework
4000

4000

undriven t=0.95

The effects of chaotic driving and its time scalare studied
also in terms of the continuous time-dependence. ddual-
itatively the time series (not shown) look very similar for the
differentr’s. However, the dependence of the mean return
times on a thresholdr, displayed in Fig.7, admits more
difference. Each curve is shown up to a maximal threshold
value ymax beyond which the statistics is poor. Two main
features can be seen: (i) The driving turns out to make the
dynamics more prone to extremes, both in terms of increased
levels of ymax, i.€. amplified variances, and increased fre-
guency of occurrence of the most extreme events. This latter
is not independent from the former, as in fact the maximal
extreme event takes infinitely long time to occur again and
because of an increase jmax With driving, extremes of a
magnitude that was maximal for the undriven case will have
a finite frequency. To compare the relative frequency of ex-
tremal behavior for different time-scale factorg,(regard-
less theymax limit values that the behavior is bounded by, the
kurtosis is commonly evaluated. We found that in the driven
cases the kurtosis is also enhanced. The increased levels of
Ymax are consistent with the appearance of islands of larger
° extent in they-direction, as exemplified by Fida vs. b, and
depend nonmonotonically on (ii) As for moderately ex-
,00 treme events, the mean return time varies in a nonmonotonic
1 manner witht, and can be larger or smaller relative to the
undriven case. In the limit of increasingly fast driving the
o o° undriven problem is approached. This is attributed to a “re-
0% 50° sistance” of the attractor to fast driving.
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Fig. 5. Probability distribution (histogramfy of y on the 3-D snap-
shot attractors corresponding to Fig.A bin size of 0.005 is used
to construct the histograms.
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Fig. 6. Dependence of the mean return tinie®n the threshold

island measurg  of the snapshot attractors, based on a time series[-r o« 1/F (yr < y) (Altmann and Kantz2005.
of lengtht ; = 500 time units (parts of them shown in FR).

poor because of the finite length=500. For allr’s stud-

ied, a close to exponential scaling can be observed beyond @
certain threshold level. The-dependence is nonmonotonic,
which can be seen as a resonance effect; the return times af
the shortest in case af=1, when extreme events tend also

to be much more extreme. Indeed, more high peaks can bﬁ

seen in Fig3b than in a and c. Near zero level & 0.03)

events, on the other hand, reveal monotonic dependenge of
ont, also consistent with the time series. A minimum occurs
at these low levels, presumably because of the one-sided fe%aps Nicolis and Nicolis 2009, and corresponds in general
ture of the time series: lower turning points are missing duet !

to the disappearances of the island.

www.nonlin-processes-geophys.net/18/573/2011/

Points (i) and (ii) are independent but both of them are
related to the distribution of the values ¢frealized over
time. They are respectively reflected in (i) a longer and
(ii) a broader or thinner tail. As for (ii), it is noted that
the mean return times are related to the normalized cumu-
lative distributionF (yr < y) by the Kac lemma, such that

For comparison, results obtained with white noise driving
(by replacingx in (L84) by a random variable uniformly dis-
tributed in[—17.5,17.5]) are also shown in FigZ. Similarly
to fast chaotic drivings, the graph deviates only slightly from
at of the undriven case, but a slight increase in the fre-
qéjency of extreme events applies uniformly over the consid-
ed range of thresholds.

To characterize the frequency of extreme events, we eval-
ate the distributionP(z.) of return timest, (Bunde et al.
2009 (inset of Fig.7) with chaotic driving. The distri-
bution appears to be consistent with an exponential decay,
x ¢~005%:  gych a form has been found in simple chaotic

o approximately uncorrelated datBlénder et al. 2008,

in agreement with the property of Poinéarecurrences in
chaotic systemsAltmann and Kantz2005.
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Fig. 8. Distribution (histogram)P (y1) of maximal elementsT in
groups of 500 consecutive maxima pft) for different values of

Fo (andt =1). Each histogram is constructed using 17 000 data
points, represented uniformly over 1000 bins in the range [1.6,2.5].

Fig. 7. Dependence of the mean return time®n the threshold
yT, based on the(¢) time evolution over 500 time units. The un-
driven case-J and the scenario of driving with white noise (+) are
included. Inset: distributio® () of return times, for r =1, based
on data of about 410° values, represented on 0% bins.

are obtained ag = —0.27, —0.38, —0.35, respectively for
4.2 Extreme value statistics Fo=6, 7.5, 8, which admit Weibull distributions in all cases.
These findings, single-sided distributions, are in agreement
The extreme value statistics characterizes the tail of the disWith the fact that extreme events are limited by a finite max-
tribution of model variabley. Therefore the maximal ele- imum determined by the attractor of the driven L84 system.
ments of large groups of consecutive maxima of the timeThe shape parameteris almost the same for the chaotic and
series are considered. As an example, distributions of maxtixed cases. In all caseg|¥| > 2.
imal elements in groups of 500 are displayed in Fdor For a reference it is noted that uniform, triangu-
F(t)'s centered at differenFg's. The values ofFy were lar, and gaussian parent distributions generate exponential
chosen such that the excitation sigrfalr) sweeps regular  (1/]y|=1), Rayleigh (¥|y|=2), and Gumbel (4]y | — o0)
(Fo=6) or chaotic ¢ = 8) regimes of the bifurcation di- extreme value distributions, respectively. With a continuous
agram (Fig.1e), and also that it sweeps both regular andvariation ofy, the case of the Rayleigh distribution consti-
chaotic regimesKp =7.5). tutes a critical one when the tail of the distribution turns from
Distributions of such maxima in the asymptotic limit can convex to concave in a point of inflection. In all our cases the
be described by a three parametgr, «,y) family of gen- tails of the probability density of group maxima and also the
eralized extreme value distributiofGEV), which combines  (unknown) parent distribution are conve, i.e. they have gra-
the Gumbel ¢ — 0), Fréchet ¢ > 0) and Weibull { < 0) dients that are monotonically vanishing.
families (Coles 2001). The functional form of the GEV dis- What is markedly different for the regular case, is the scale
tribution can be fitted to sample data in order to determine thgparameter, as indicated by Fig8. We have found the fol-
prevailing type of distribution. The locatiorE] and scale  lowing values:oc =0.0047, 0.1191, 0.0306, respectively for
parameterso) are the mean and standard deviation of the Fo=26, 7.5, 8. These figures reveal another interesting effect
sample, and the shape parametés varied to minimize the that the greatest variability of extremes occurs for the mixed
fitting error. The fitting procedure is done iteratively by in- case.
creasing the size of groups of consecutive maxigralfrecht
et al, 1997. For a fixed length of time series, the increasing
group size will compromise the number of group maxima5 Discussions
used for fitting, and therefore increasing errors in estimating
y are incurred. The original time series length has to be longOur model climate is a fully deterministic one without any
enough that an approximation of the limit value be possiblenoise. The climate model L84 is a nonautonomous subsys-
with relatively small errors. For our analysis we generated atem driven by the other subsystem L63. As a consequence
number of about 10maxima, with which an iterative esti- of the driving, the method of snapshot (pullback) attractors
mation of the shape parameter resulted in the diagram showoan be applied. For the information dimension of the snap-
in Fig. 9. From this an approximation of the limit values shot attractor the Kaplan-Yorke formula holdse{irappier
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